Threejs 学习笔记 | 灯光与阴影

文章目录

  • Threejs 学习笔记 | 灯光与阴影
    • 如何让灯光照射在物体上有阴影
      • LightShadow - 阴影类的基类
      • 平行光的shadow计算投影属性 - DirectionalLightShadow类
        • 平行光的投射相机
      • 聚光灯的shadow计算投影属性- SpotLightShadow类
        • 聚光灯的投射相机
    • 平行光 DirectionalLight
    • 聚光灯 SpotLight
      • 聚光灯的使用
    • 点光源 PointLight
      • 案例:使用小球可视化点光源
        • 案例:光源围绕三维物体做圆周运动 - 模拟太阳

Threejs 学习笔记 | 灯光与阴影

  • 总结1:灯光与是否可以投影
灯光描述是否可以投射阴影
AmbientLight 环境光1.环境光没有特定方向
2.整体改变场景的光照,会均匀的照亮场景中的所有物体。
×
因为没有方向,所以不能用来投射阴影。
DirectionalLight 平型光平行光是沿着特定方向发射的光。这种光的表现像是无限远,从它发出的光线都是平行的。
常用来模拟太阳光的效果。太阳足够远,因此认为太阳的位置是无限远且发生的光是平行的。
SpotLight 聚光灯光线从一个点沿一个方向射出,随着光线照射的变远,光线圆锥体的尺寸也逐渐增大。
PointLight 点光源从一个点向各个方向发射的光源。
常用于模拟灯泡
RectAreaLight 平面光光源平面光光源从一个矩形平面上均匀地发射光线(矩形的正反面两个方向)
用来模拟像明亮的窗户或者条状灯光光源。
×
  • 总结2:材质与是否受灯光影响
    使用Light模拟光照对网格模型mesh(物体表面)的影响,如果使用受光照影响的材质,在不开灯的情况下是看不见的。如果希望光源照在模型的外表面,就需要将光源放在模型的外面
材质描述是否受光照影响其他
MeshBasicMaterial 基础光照模型一个以简单着色(平面或线框)方式来绘制几何体的材质。×
MeshStandardMaterial 标准网格材质属于PBR物理材质(基于物理的渲染physically-based rendering),可以提供更加真实的材质效果在实践中,该材质提供了比MeshLambertMaterialMeshPhongMaterial 更精确和逼真的结果,代价是计算成本更高。

标准网格材质的纹理贴图属性基本覆盖了哑光和高光材质的特点,所以平时常用标准网格材质
MeshLambertMaterial Lambert网格材质(漫反射)一种非光泽表面的材质(模拟木材或石材),没有镜面高光。(偏向于哑光的效果)
该材质使用基于非物理的Lambertian模型来计算反射率。
由于反射率和光照模型的简单性MeshPhongMaterialMeshStandardMaterial或者MeshPhysicalMaterial 上使用这种材质时会以一些图形精度为代价,得到更高的性能。
MeshPhongMaterial Phong网格材质(漫反射、高光反射)一种用于具有镜面高光的光泽表面的材质(模拟具有镜面高光的光泽表面)。
该材质使用非物理的Blinn-Phong模型来计算反射率。
MeshStandardMaterialMeshPhysicalMaterial上使用此材质时,性能通常会更高,但会牺牲一些图形精度。
MeshPhysicalMaterial 物理网格材质MeshPhysicalMaterialMeshStandardMaterial的扩展子类,提供了更高级的渲染属性(透明度,非金属材质提供更多的光线反射)物理网格材质使用了更复杂的着色器功能,每个像素的渲染都要比其他材质更费性能,大部分的特性是默认关闭的,需要手动开启。
MeshToonMaterial 卡通材质一种实现卡通着色的材质

如何让灯光照射在物体上有阴影

import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import * as THREE from "three";

const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(
  45, 
  window.innerWidth / window.innerHeight, 
  1,
  8000 
);
camera.position.set(0,0,10)
const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight); // 设置渲染的尺寸大小
const worldAxesHelper = new THREE.AxesHelper(10);
scene.add(worldAxesHelper);

// 物体
const SphereGeometry = new THREE.SphereGeometry(1,20,20);
const material =  new THREE.MeshStandardMaterial();//1.材质要受光照影响
const sphere = new THREE.Mesh(SphereGeometry, material);
scene.add(sphere);

// 创建平面
const planeGeometry = new THREE.PlaneGeometry(10,10);
const plane = new THREE.Mesh(planeGeometry, material);
plane.position.set(0,-1,0);
plane.rotation.x = -Math.PI / 2;
scene.add(plane);

// 灯光
const light = new THREE.AmbientLight(0xffffff,0.5);
scene.add(light);
const directionalLight = new THREE.DirectionalLight(0xffffff,0.5);
directionalLight.position.set(10,10,10);
scene.add(directionalLight);

document.body.appendChild(renderer.domElement);
new OrbitControls(camera, renderer.domElement)
const animation= () => {
  requestAnimationFrame(animation);
  renderer.render(scene, camera);
};
animation();

在这里插入图片描述

1.材质要受光照影响
2.设置渲染器开启阴影的计算 renderer.shadowMap.enabled=true
该设置默认是false,如果开启允许再场景中使用阴影贴图。
3.设置光照投射阴影directionalLight.castShadow = true
此属性设置为true灯光将投射阴影。注意:这样做的代价比较高,需要通过调整让阴影看起来正确。
4.设置物体投射阴影object3D.castShadow = true
默认值为false,对象是否被渲染到阴影贴图中。(将物体投影出去)
5.设置物体接受阴影object3D.receiveShadow = true
默认值为false,是否接收阴影。

import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import * as THREE from "three";

const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(
  45, 
  window.innerWidth / window.innerHeight, 
  1,
  8000 
);
camera.position.set(0,0,10)
const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight); 
//2.设置渲染器开启阴影的计算,允许在场景中使用阴影贴图
renderer.shadowMap.enabled=true

const worldAxesHelper = new THREE.AxesHelper(10);
scene.add(worldAxesHelper);



// 物体
const SphereGeometry = new THREE.SphereGeometry(1,20,20);
const material =  new THREE.MeshStandardMaterial();//1.材质要受光照影响
const sphere = new THREE.Mesh(SphereGeometry, material);
scene.add(sphere);
//4.投影球
sphere.castShadow = true;

// 创建平面
const planeGeometry = new THREE.PlaneGeometry(10,10);
const plane = new THREE.Mesh(planeGeometry, material);
plane.position.set(0,-1,0);
plane.rotation.x = -Math.PI / 2;
scene.add(plane);
// 5.在平面上接受投影
plane.receiveShadow = true;

// 灯光
const light = new THREE.AmbientLight(0xffffff,0.5);
scene.add(light);
const directionalLight = new THREE.DirectionalLight(0xffffff,0.5);
directionalLight.position.set(10,10,10);
scene.add(directionalLight);
//3.设置光照投射阴影
directionalLight.castShadow = true;

document.body.appendChild(renderer.domElement);
new OrbitControls(camera, renderer.domElement)
const animation= () => {
  requestAnimationFrame(animation);
  renderer.render(scene, camera);
};
animation();

在这里插入图片描述

LightShadow - 阴影类的基类

属性描述
lightShadow .radius : Float将此值设置为大于1的值将模糊阴影的边缘。
lightShadow .mapSize : Vector2参数Vector2定义阴影贴图的宽度和高度,默认值为512*512.

较高的值会以计算时间为代价提供更好的阴影质量。值必须是2的幂,直到给定设备的WebGLRenderer.capabilities.maxTextureSize,阴影贴图的宽高不一定相等。

平行光的shadow计算投影属性 - DirectionalLightShadow类

语法:directionalLight.shadow : DirectionalLightShadow
DirectionalLightShadow对象,用于计算该平行光产生的阴影。与其他阴影类不同,平行光阴影使用OrthographicCamera正交相机来计算阴影,而不是PerspectiveCamera透视相机。

继承链:LightShadow → DirectionalLightShadow

理解:通过光来设置阴影贴图的参数?光照产生了阴影贴图?

平行光的投射相机

directionalLightShadow.camera : Camera:类似正交相机,超出范围不会计算阴影贴图(范围类似一个6面体 长方体),

边缘模糊与阴影贴图分辨率案例
radius的效果感觉有重影不是很光滑,原因是阴影贴图分辨率不够。可以通过lightShadow mapSize 调整阴影贴图的分辨率。

directionalLight.shadow.radius = 20; // 设置边缘模糊
directionalLight.shadow.mapSize.set(2048,2048); // 设置分辨率

在这里插入图片描述

设置平行光投射相机的属性案例

left:摄像机所在点为原点,向左的最大距离。
right:摄像机所在点为原点,向右的最大距离
top:摄像机所在点为原点,向上的最大距离
bottom:摄像机所在点为原点,向下最大距离。
near :摄像机所在点为原点,垂直于left\right\top\bottom构成的十字坐标系,从距离原点什么位置开始进行渲染。
far:摄像机所在点为原点,垂直于left\right\top\bottom构成的十字坐标系,到距离原点什么位置结束渲染。

在这里插入图片描述


import { GUI } from 'three/addons/libs/lil-gui.module.min.js';
const gui = new GUI();



// 设置平行光投射相机的属性
directionalLight.shadow.camera.near = 0.5 // 近端
directionalLight.shadow.camera.far = 20 // 远端
directionalLight.shadow.camera.top = 5 
directionalLight.shadow.camera.bottom = -5 
directionalLight.shadow.camera.left = -5 // 摄像机所在点为原点,向左的最大距离。
directionalLight.shadow.camera.right = 5 // 摄像机所在点为原点,向右的最大距离

// 采用gui观察效果
gui.add(directionalLight.shadow.camera,'near').min(0).max(10).step(0.1).onChange(()=>{
  directionalLight.shadow.camera.updateProjectionMatrix () ;//更新摄像机投影矩阵。在任何参数被改变以后必须被调用。
})

聚光灯的shadow计算投影属性- SpotLightShadow类

说明: 聚光灯使用PerspectiveCamera透视相机来计算投影。
继承链:LightShadow → SpotLightShadow

聚光灯的投射相机

directionalLightShadow.camera : Camera:默认值为PerspectiveCamera透视相机,可以设置透视相机的属性

平行光 DirectionalLight

语法:new THREE.DirectionalLight( color : Color, intensity : Float );
color:默认为一个白色(0xffffff)的 Color 对象。
intensity:光照的强度。默认值为 1

聚光灯 SpotLight

说明:聚光灯的照射范围是一个圆锥体

语法:new THREE.SpotLight( color : Color, intensity : Float, distance : Float, angle : Radians, penumbra : Float, decay : Float )
color:默认为一个白色(0xffffff)的 Color 对象。
intensity:光照强度。默认值为 1。
distance:光源照射的最大距离。默认值为 0(无限远)。
angle:光线照射范围的角度。默认值为 Math.PI/3。
penumbra :聚光锥的半影衰减百分比,默认值为 0。
decay: 沿着光照距离的衰减量,默认值为 2。想象灯光,越靠近光源,光线越亮,光线会随距离的增而衰弱。

继承链:Object3D → Light → 聚光灯(SpotLight)

聚光灯的使用

属性描述注意点
spotLight .decay : Float光线随着距离增加变暗的衰减量,默认值为 2。
spotLight .angle : Float光线照射范围的角度,用弧度表示。不应超过 Math.PI/2,默认值为 Math.PI/3。
spotLight .target: Object3D灯光从它的位置(position)指向目标位置。默认的目标位置为(0, 0, 0)1.可以将目标设置为场景中的其他对象(任意拥有 position 属性的对象),可以实现光源追踪目标对象的效果
2.如果要改为除默认值之外的其他位置,该位置必须被添加到场景(scene)中。 - 为了让目标的 matrixWorld 在每一帧自动更新。
spotLight .shadow : SpotLightShadowSpotLightShadow 对象,用与计算此光照的阴影。

聚光灯投射阴影案例

import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import * as THREE from "three";

const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(
  45, 
  window.innerWidth / window.innerHeight, 
  1,
  8000 
);
camera.position.set(0,0,10)
const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight); 
renderer.shadowMap.enabled=true

const worldAxesHelper = new THREE.AxesHelper(10);
scene.add(worldAxesHelper);

// 物体
const SphereGeometry = new THREE.SphereGeometry(1,20,20);
const material =  new THREE.MeshStandardMaterial();
const sphere = new THREE.Mesh(SphereGeometry, material);
scene.add(sphere);
sphere.castShadow = true;

// 创建平面
const planeGeometry = new THREE.PlaneGeometry(10,10);
const plane = new THREE.Mesh(planeGeometry, material);
plane.position.set(0,-1,0);
plane.rotation.x = -Math.PI / 2;
scene.add(plane);
plane.receiveShadow = true;

// 灯光
const light = new THREE.AmbientLight(0xffffff,1);
scene.add(light);
const spotLight = new THREE.SpotLight(0xffffff,1);
spotLight.position.set(5,5,5);
spotLight.decay  = 0;  // 注意需要设置衰减为0,不然可能到三维物体的位置时聚光灯的光照已经衰减完了-也可以使用gui调整聚光灯的位置
spotLight.castShadow = true;
scene.add(spotLight);

document.body.appendChild(renderer.domElement);
new OrbitControls(camera, renderer.domElement)
const animation = () => {
  requestAnimationFrame(animation);
  renderer.render(scene, camera);
};
animation();

光源追踪目标对象案例

const planeGeometry = new THREE.PlaneGeometry(50,50); // 调大平面便于观察

// ...其他代码省略同上述案例一致

const spotLight = new THREE.SpotLight(0xffffff,1);
spotLight.position.set(5,5,5);
spotLight.decay  = 0;  // 注意需要设置衰减为0,不然可能到三维物体的位置时聚光灯的光照已经衰减完了-也可以使用gui调整聚光灯的位置
spotLight.castShadow = true;
scene.add(spotLight);
// spotLight的target属性
spotLight.target = sphere;
// gui 调整三维物体的位置,观察光源是否追踪物体
gui.add(sphere.position,'x').min(-5).max(5).step(0.5)

在这里插入图片描述

点光源 PointLight

语法:new PointLight( color : Color, intensity : Float, distance : Number, decay : Float )
color:默认为一个白色(0xffffff)的 Color 对象。
intensity:光照强度,默认值为 1。
distance :光源照射的最大距离,默认值为 0(无限远)。
decay:沿着光照距离的衰退量,默认值为 2。

案例:使用小球可视化点光源

1.选择不受光源影响的MeshBasicMaterial 基础光照材质,来创建一个小球。(本案例中设置了环境灯,所有材质都可以。但如果没有环境等,灯光在小球里面,场景中灯光仍在但小球看不见)

2.将点光源添加到小球的children中,这样小球就成为点光源的父级。修改父级小球的position,灯光的世界坐标会跟随一起改变。
关于世界坐标、本地坐标、层级模型的笔记

import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import * as THREE from "three";
import { GUI } from 'three/addons/libs/lil-gui.module.min.js';
const gui = new GUI();

const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(
  45, 
  window.innerWidth / window.innerHeight, 
  1,
  8000 
);
camera.position.set(0,0,10)
const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight); 
renderer.shadowMap.enabled=true

const worldAxesHelper = new THREE.AxesHelper(10);
scene.add(worldAxesHelper);


// 物体
const SphereGeometry = new THREE.SphereGeometry(1,20,20);
const material =  new THREE.MeshStandardMaterial();
const sphere = new THREE.Mesh(SphereGeometry, material);
scene.add(sphere);
sphere.castShadow = true;

// 创建平面
const planeGeometry = new THREE.PlaneGeometry(10,10); // 调大平面便于观察
const plane = new THREE.Mesh(planeGeometry, material);
plane.position.set(0,-1,0);
plane.rotation.x = -Math.PI / 2;
scene.add(plane);
plane.receiveShadow = true;

// 灯光
const light = new THREE.AmbientLight(0xffffff,1);
scene.add(light);
// 可视化点光源
const smallBall = new THREE.Mesh(new THREE.SphereGeometry(0.1,20,20),new THREE.MeshBasicMaterial({color:0x00ff00})) // 选择不受灯光影响的材质

const pointLight = new THREE.PointLight(0xff0000,1);
pointLight.decay  = 0; 
pointLight.castShadow = true;

smallBall.add(pointLight); // 将点光源添加到小球的children中,小球是点光源的父级
smallBall.position.set(2,2,2) // 小球position改变,点光源的世界坐标跟着改变
scene.add(smallBall); // 将小球添加进场景,子元素点光源会跟着被添加


// gui 调整小球位置可观察点光源的移动
gui.add(smallBall.position,'x').min(-5).max(5).step(0.5)

document.body.appendChild(renderer.domElement);
new OrbitControls(camera, renderer.domElement)
const animation = () => {
  requestAnimationFrame(animation);
  renderer.render(scene, camera);
};
animation();
![请添加图片描述](https://img-blog.csdnimg.cn/direct/6b906f0a50f44a648a95fea4b5a0b8ab.gif)

在这里插入图片描述

案例:光源围绕三维物体做圆周运动 - 模拟太阳

思路:每一帧渲染时,都改变小球的坐标 - 可以通过Clock时钟来控制

const clock = new THREE.Clock();

const animation = () => {
  let time = clock.getElapsedTime(); // 返回Clock变量被创建以来所经历的时间。
	
  // 在xoz平面做圆周运动 改变小球的x与z坐标
  smallBall.position.x = Math.cos(time) * 4; // sin(单位圆上点的y轴坐标)和cos(单位圆上点的x轴坐标) * r(表示圆的半径)
  smallBall.position.z = Math.sin(time) * 4;
  requestAnimationFrame(animation);
  renderer.render(scene, camera);
};
animation();

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/610400.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

企业数据有什么价值?

在当下的数字经济时代,数据已上升为国家重要的基础性战略资源,加快建设数字中国、网络强国这一蓝图的实现,离不开数据要素的支撑。数据作为新型生产要素,具有非消耗性、非竞争性等特征,为突破传统生产要素的增长约束提…

【LeetCode:LCR 077. 排序链表 + 链表】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

Bpmn.js使用(仅查看版)

Bpmn.js使用&#xff08;仅查看版&#xff09; 下载 npm install bpmn-js创建一个 Dom 节点来挂载画布元素。 <a-tabs v-model:activeKey"activeKey" change"tabsChange"><a-tab-pane key"1" tab"审批记录"><a-tabl…

Spring添加注解读取和存储对象

5大注解 Controller 控制器 Service 服务 Repository 仓库 Componet 组件 Configuration 配置 五大类注解的使用 //他们都是放在同一个目录下&#xff0c;不同的类中 只不过这里粘贴到一起//控制器 Controller public class UserController {public void SayHello(){System.ou…

第十二届蓝桥杯省赛真题 Java C 组【原卷】

文章目录 发现宝藏【考生须知】试题 A: ASC试题 B: 空间试题 C: 卡片试题 D: 相乘试题 E: 路径试题 F: 时间显示试题 G: 最少砝码试题 H : \mathrm{H}: H: 杨辉三角形试题 I: 左孩子右兄弟试题 J : \mathrm{J}: J: 双向排序 发现宝藏 前些天发现了一个巨牛的人工智能学习网站…

Spring如何控制Bean的加载顺序

前言 正常情况下&#xff0c;Spring 容器加载 Bean 的顺序是不确定的&#xff0c;那么我们如果需要按顺序加载 Bean 时应如何操作&#xff1f;本文将详细讲述我们如何才能控制 Bean 的加载顺序。 场景 我创建了 4 个 Class 文件&#xff0c;分别命名为 FirstInitialization Se…

国家软考办:2024年上半年软考考试安排

按照《2024年计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试工作安排及有关事项的通知》&#xff08;计考办〔2024〕1号&#xff09;文件精神&#xff0c;结合各地机位实际&#xff0c;现将2024年上半年计算机软件资格考试有关安排通告如下&#xff1a; 一、考…

代码随想录算法训练营第36期DAY19

DAY19 104二叉树的最大深度 根节点的高度就是最大深度。 非递归法&#xff1a; /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) …

Maven的使用

1.第一个Maven工程 1.1 创建约定目录结构 ​ Hello ​ src ​ ——main(存放主程序) ​ ————java(存放源代码文件) ​ ————resources(存放配置文件和资源文件) ​ ——test(存放测试程序) ​ ————java ​ ————resources ​ pom.xml 1.2 创建核心文件 pom.xml …

知识竞赛奖品买什么好,不是贵的就好

知识竞赛奖品分精神奖品和物质奖品两种&#xff0c;两种缺一不同&#xff0c;精神奖品主要是荣誉证书和奖牌或奖杯之类&#xff0c;满足选手精神需要&#xff0c;另外&#xff0c;物质奖品也不可以少&#xff0c;否则选手没有参与积极性&#xff0c;物质奖品可以是奖金或奖品&a…

如何确保UDP文件传输工具有最低稳定的传输速度?

在当前日新月异的数字时代背景下&#xff0c;文件传输工具已经成为我们日常生活与工作中不可或缺的一部分&#xff0c;尤其针对那些频繁涉及即时数据交互与多媒体流通的场景。 UDP协议&#xff0c;以其突出的高速传输与低延迟特性&#xff0c;脱颖而出成为众多用户的首选。不过…

Whistle 在手机上配置代理

1、运行Whistle w2 start 在浏览器打开 http://127.0.0.1:8899/#rules 2、点击https展示whistle下载二维码&#xff0c;用手机浏览器扫码下载并安装rootCA.crt 证书 安装时选择【用于VPN和应用】 3、与电脑连接同一网络WiFi&#xff0c;右键修改网络&#xff0c; 显示高级选…

nmap使用教程

nmap使用教程 一、nmap简介二、nmap常用命令2.1、target specification&#xff08;目标规范&#xff09;2.1.1、用法2.1.2、详情 2.2、HOST DISCOVERY&#xff08;主机发现&#xff09;2.2.1、用法2.2.2、详情 2.3、SCAN TECHNIQUES&#xff08;扫描技术&#xff09;2.4、PORT…

与Apollo共创生态:Apollo7周年大会的心得体会

目录 一、开放创新 - Apollo自动驾驶开放平台二、合作共赢 - 企业解决方案Apollo X三、共创生态 - Apollo开放平台企业生态计划四、结语 - 个人的一些感悟 自2017年诞生以来&#xff0c;Apollo开放平台在不懈的迭代与创新中&#xff0c;历经了基础能力夯实、场景能力拓展和系统…

【复试分数线】C9历年分数线汇总(第二弹)

今天我将分析C9中主要考信号的5所院校&#xff1a;复旦大学、上海交通大学、南京大学、哈尔滨工业大学、西安交通大学。 这次会为大家整理四电四邮的整理了近三年各院校的复试分数线作为参考&#xff0c;大家可以参考&#xff01; 大多数院校采取的是1.2:1差额的形式复试。举…

Web自动化测试 selenium 定位元素方法有哪些?

简介&#xff1a; 在Selenium Web自动化测试中&#xff0c;元素定位是非常重要的一步。它的目的是通过一些特定的属性或者位置信息来定位页面上的元素&#xff0c;以便进行后续的操作。本文将从0到1&#xff0c;详细介绍Selenium Web自动化测试中的元素定位方法。 文章正文&am…

查看微信小程序主包大小

前言 略 查看微信小程序主包大小 在微信开发者工具右上角找到“详情->基本信息” 查看微信小程序主包构成 通过微信开发者工具中的“代码依赖分析”工具查看

whisper使用

whisper使用 1. 直接调用 语音识别2. 语种识别 whisper.detect_language()和whisper.decode()3. 指定要识别的语种做语音识别**whisper 源码的transcribe函数** 函数解析1. transcript.py2. tokenizer.py3. audio.py4. __ init__.py github: https://gitcode.com/openai/whispe…

原来pip是有默认路径的。

今天一直报错&#xff1a; bash: /root/data1/anaconda3/envs/li_3_10/bin/pip: /root/lsc/anaconda3/envs/li_3_10/bin/python: bad interpreter: No such file or directory 原来是root/data1/anaconda3/envs/li_3_10/bin/pip: 这个位置的pip 自身带默认路径&#xff0c;然…
最新文章